
Presentation of Python

For Beginner

Presented By : Deepak Kumar

 (Application Architecture)

 An ordered set of instructions to be executed by a
computer to carry out a specific task is called a
program, and the language used to specify this set of
instructions to the computer is called a programming
language.

 As we know that computers understand the language of
0s and 1s which is called machine language or low
level language. However, it is difficult for humans to
write or comprehend instructions using 0s and 1s. This
led to the advent of high-level programming languages
like Python, C++, Visual Basic, PHP, Java that are
easier to manage by humans but are not directly
understood by the computer.

What is Python?

Python is simple & easy

Free & Open Source

High Level Language

Developed by Guido van Rossum

Portable

There are two ways to use the Python interpreter:

 a) Interactive mode

To work in the interactive mode, we can simply type a Python

statement on the >>> prompt directly.

 In the script mode, we can write a Python program

in a file, save it and then use the interpreter to

execute it. Python scripts are saved as files where

file name has extension “.py”.

Keywords are reserved words. Each keyword has a

specific meaning to the Python interpreter, and we

can use a keyword in our program only for the

purpose for which it has been defined. As Python

is case sensitive, keywords must be written exactly

as they are available.

A variable in a program is uniquely identified by a

name (identifier). Variable in Python refers to an

object — an item or element that is stored in the

memory. Value of a variable can be a string.

(e.g., „b‟, „Global Citizen‟), numeric (e.g., 345) or

any combination of alphanumeric characters (CD67).

gender = 'M'

message = "Keep Smiling"

price = 987.9

 #To find the area of a rectangle

 length = 10

 breadth = 20

 area = length * breadth

 print(area)

Output: 200

 Comments are used to add a remark or a note in the source
code. Comments are not executed by interpreter.

They are added with the purpose of making the source code
easier for humans to understand.

In Python, a comment starts with # (hash sign). Everything
following the # till the end of that line is treated as a comment
and the interpreter simply ignores it while executing the
statement.

Example

#Variable amount is the total spending on

#grocery

 Python treats every value or data item whether

numeric, string, or other type (discussed in the

next section) as an object in the sense that it can be

assigned to some variable or can be passed to a

function as an argument.

Every value belongs to a specific data type in

Python. Data type identifies the type of data values

a variable can hold and the operations that can be

performed on that data.

 Number data type stores numerical values only. It is
further classified into three different types: int, float
and complex.

 Boolean data type (bool) is a subtype of integer. It is a
unique data type, consisting of two constants, True and
False. Boolean True value is non-zero, non-null and
non-empty. Boolean False is the value zero.

A Python sequence is an ordered collection of

items, where each item is indexed by an integer.

The three types of sequence data types available in

Python are Strings, Lists and Tuples.

A) String

String is a group of characters. These characters may

be alphabets, digits or special characters including

spaces. String values are enclosed either in single

quotation marks (e.g., „Hello‟) or in double quotation

marks (e.g., “Hello”).

 B) List

 List is a sequence of items separated by commas and the items are

enclosed in square brackets [].

#To create a list

 list1 = [5, 3.4, "New Delhi", "20C", 45]

#print the elements of the list list1

print(list1) [5, 3.4, 'New Delhi', '20C', 45]

(C) Tuple

Tuple is a sequence of items separated by commas and items are

enclosed in parenthesis (). This is unlike list, where values are

enclosed in brackets []. Once created, we cannot change the tuple.

#create a tuple tuple1

 tuple1 = (10, 20, "Apple", 3.4, 'a')

#print the elements of the tuple tuple1

print(tuple1) (10, 20, "Apple", 3.4, 'a')

 Set is an unordered collection of items separated by
commas and the items are enclosed in curly brackets {
}. A set is similar to list, except that it cannot have
duplicate entries. Once created, elements of a set
cannot be changed.

#create a set

set1 = {10,20,3.14,"New Delhi"} print(type(set1))

print(set1)

 {10, 20, 3.14, "New Delhi"}

 #duplicate elements are not included in set

set2 = {1,2,1,3}

print(set2)

 {1, 2, 3}

None is a special data type with a single value. It is

used to signify the absence of value in a situation.

None supports no special operations, and it is

neither same as False nor 0 (zero).

 myVar = None

print(type(myVar))

print(myVar)

 None

Mapping is an unordered data type in Python. Currently, there
is only one standard mapping data type in Python called
dictionary.

(A) Dictionary

 Dictionary in Python holds data items in key-value pairs.
Items in a dictionary are enclosed in curly brackets { }.
Dictionaries permit faster access to data. Every key is
separated from its value using a colon (:) sign. The key : value
pairs of a dictionary can be accessed using the key.

#create a dictionary

dict1 = {'Fruit':'Apple', 'Climate':'Cold', 'Price(kg)':120} \

print(dict1)

{'Fruit': 'Apple', 'Climate': 'Cold', 'Price(kg)': 120}

print(dict1['Price(kg)'])

120

Variables whose values can be changed after they

are created and assigned are called mutable.

Variables whose values cannot be changed after

they are created and assigned are called

immutable.

 An operator is used to perform specific mathematical

or logical operation on values. The values that the

operators work on are called operands. For example, in

the expression 10 + num, the value 10, and the variable

num are operands and the + (plus) sign is an operator.

 Python supports arithmetic operators that

are used to perform the four basic arithmetic

operations as well as modular division, floor

division and exponentiation.

 Relational operator compares the values of the

operands on its either side and determines the

relationship among them. Assume the Python variables

num1 = 10, num2 = 0, num3 = 10, str1 = "Good", str2

= "Afternoon" for the following examples.

Assignment operator assigns or changes the value

of the variable on its left.

There are three

logical operators

supported by

Python. These

operators (and,

or, not) are to be

written in lower

case only.

 Identity operators are used to determine whether the

value of a variable is of a certain type or not. Identity

operators can also be used to determine whether two

variables are referring to the same object or not. There

are two identity operators.

Membership operators are used to check if a value

is a member of the given sequence or not.

An expression is defined as a combination of constants,

variables, and operators. An expression always evaluates

to a value. A value or a standalone variable is also

considered as an expression but a standalone operator is

not an expression.

Examples:

(i) 100 (iv) 3.0 + 3.14 (ii) num (v) 23/3 -5 * 7(14 -2) (iii)

num – 20.4 (vi) "Global" + "Citizen"

 In Python, a statement is a unit of code that the

Python interpreter can execute.

Example

x = 4 #assignment statement

 cube = x ** 3 #assignment statement

 print (x, cube) #print statement

4 64

 Sometimes, a program needs to interact with the

user‟s to get some input data or information from

the end user and process it to give the desired

output. In Python, we have the input() function for

taking the user input. The input() function prompts

the user to enter data. It accepts all user input as

string. The user may enter a number or a string but

the input() function treats them as strings only. The

syntax for input() is:

 input ([Prompt])

fname = input("Enter your first name: ")

 Enter your first name: Arnab

 age = input("Enter your age: ")

Enter your age: 19

type(age)

 <class 'string'>

#function int() to convert string to integer

age = int(input("Enter your age:"))

 Enter your age: 19

type(age)

<class 'int'>

As and when required, we can change the data type

of a variable in Python from one type to another.

Such data type conversion can happen in two

ways: either explicitly (forced) when the

programmer specifies for the interpreter to convert

a data type to another type; or implicitly, when the

interpreter understands such a need by itself and

does the type conversion automatically.

Before not using type conversion

num1 = input("Enter a number and I'll double it: ")

num1 = num1 * 2 print(num1)

 Enter a number and I'll double it: 2

22

After using type conversion

num1 = input("Enter a number and I'll double it: ")

num1 = int(num1) #convert string input to integer

num1 = num1 * 2 print(num1)

Enter a number and I'll double it: 2

 4

Explicit conversion, also called type casting happens

when data type conversion takes place because the

programmer forced it in the program. The general

form of an explicit data type conversion is:

 (new_data_type) (expression)

Implicit conversion, also known as coercion, happens

when data type conversion is done automatically by

Python and is not instructed by the programmer.

Program to show implicit conversion from int to float.

num1 = 10 #num1 is an integer

num2 = 20.0 #num2 is a float

sum1 = num1 + num2 #sum1 is sum of a float and an

integer

print(sum1)

print(type(sum1))

Output: 30.0

The process of identifying and removing such

mistakes, also known as bugs or errors, from a

program is called debugging. Errors occurring

in programs can be categorised as:

i) Syntax errors

ii) Logical errors

iii) Runtime errors

Like other programming languages, Python has its own

rules that determine its syntax. The interpreter interprets

the statements only if it is syntactically (as per the rules

of Python) correct. If any syntax error is present, the

interpreter shows error message(s) and stops the

execution there. For example, parentheses must be in

pairs, so the expression (10 + 12) is syntactically correct,

whereas (7 + 11 is not due to absence of right

parenthesis. Such errors need to be removed before the

execution of the program.

A logical error is a bug in the program that causes it to
behave incorrectly. A logical error produces an undesired
output but without abrupt termination of the execution of
the program.

For example, if we wish to find the average of two
numbers 10 and 12 and we write the code as 10 + 12/2, it
would run successfully and produce the result 16. Surely,
16 is not the average of 10 and 12. The correct code to
find the average should have been (10 + 12)/2 to give the
correct output as 11. Logical errors are also called
semantic errors as they occur when the meaning of the
program (its semantics) is not correct.

 A runtime error causes abnormal termination of

program while it is executing. Runtime error is when

the statement is correct syntactically, but the interpreter

cannot execute it. Runtime errors do not appear until

after the program starts running or executing.

For example, we have a statement having division

operation in the program. By mistake, if the denominator

entered is zero then it will give a runtime error like

“division by zero”.

#Runtime Errors Example

num1 = 10.0

num2 = int(input("num2 = "))

#if user inputs a string or a zero, it leads to runtime error

print(num1/num2)

